Recombinant Nanoparticle Vaccines: Respiratory and Emerging Viruses

Lou Fries, MD
Novavax Inc.
25 May 2016
The Novavax nanoparticle platform and Matrix-M™ adjuvant

Recombinant Nanoparticles:
- Sequences cloned into baculovirus
- Expressed in Sf9 cells
 - glycosylated
 - properly folded
- Detergent extraction
- Chromatographically purified

Protein particles form micelles for efficient antigen presentation:
- Single antigen
- Repeating unit

Matrix-M Adjuvant Saponin Based Nanoparticle

Nanoparticle size (40 nm) particles composed of Quillaja saponins, cholesterol and phospholipid

Activates innate immunity and results in:
- Increased antibody responses
- Increase CD4+ and CD8+ responses
- Dose sparing

Novavax RSV F Nanoparticles
Respiratory Syncytial Virus (RSV)
The RSV problem

• RSV is a major cause of ALRI in children worldwide\(^1,2\) :
 • 33.8 x 10\(^6\) (19.3-46.2 x 10\(^6\)) cases of ALRI annually in children under 5
 • ~22% of all ALRI, 28.8% of pneumonias, and 22.6% of severe pneumonia
 • 3.4 x 10\(^6\) (2.8-4.3 x 10\(^6\)) hospitalizations
 • 66-199,000 deaths; 99% in developing countries

• RSV is also major cause of community and hospitalized lower respiratory tract disease in older adults, often equaling influenza\(^3,4\).

• Naturally-occurring neutralizing antibodies are associated with a decreased risk of severe disease and pneumonia\(^5,6\), but...

• Recurrent infection occurs throughout life, despite substantial neutralizing titers.

RSV F protein is highly conserved – an ideal vaccine target

Structure of RSV

- **Attachment protein (G)**
- **Small hydrophobic Protein (SH)**
- **Nucleoprotein (N)**
- **Lipid bilayer**
- **Matrix protein (M)**
- **Phosphoprotein (P)**
- **RNA polymerase (L)**
- **Fusion protein (F)**

RSV is an evolving RNA virus

- Primary surface glycoproteins evaluated for vaccines are the attachment protein (G) and the fusion protein (F)
- Evolutionary changes occur predominantly in the G protein
- The F protein, in contrast, is highly conserved, so no vaccine strain change is necessary
- Site II on the F protein is the target of palivizumab, and is highly conserved from year to year and across isolates since at least the 1980’s

Frequency of Amino Acid Changes

Novavax’ RSV F vaccine is a full-length F protein stabilized with two changes:

- (1) a mutation in furin cleavage site II,
- (2) a 10 amino acid deletion (Phe137 - Val146) in fusion domain.

Modification of the furin cleavage site blocks full transition to post-fusion form of RSV F, and exposes cryptic, neutralizing epitopes not consistently recognized on pre-fusion F.

The hydrophobic C-terminal transmembrane region is intact, so the RSV F oligomers forms protein-protein nanoparticles.

Source: Smith, et al. 2012. PLOS. 7(11), e50852
RSV F nanoparticle induces antibodies that compete with palivizumab for binding to RSV F

• Mice (unsurprisingly) and men (surprisingly) have little or no serum antibody competing with palivizumab (PCA) pre-immunization.
• Immunization with RSV F nanoparticles evokes PCA
 • Men are primed (one dose works), mice are not
• PCA can be quantified using a palivizumab standard curve
Immunized cotton rats are protected from RSV challenge

- RSV F vaccine groups (± aluminum) were compared to live challenge formalin-activated vaccine (FI-RSV) and passive palivizumab.

- RSV F Vaccine induced anti-F IgG, PCA and neutralizing antibodies.

- The RSV F Vaccine eliminated virus replication in the lungs without disease enhancement (unlike FI-RSV immunized animals).
Immunity elicited by the RSV F nanoparticle vaccine targets multiple broadly neutralizing epitopes

- Immune responses to conserved bnMAb epitopes are absent/low after years of infection, suggesting these epitopes are important to virus fusion function and are cryptic in natural infection

- Novavax RSV F vaccine induces antibodies to Site I, II and IV.

RSV F nanoparticle vaccine induces statistically-significant protection in Phase II trial in adults ≥60 y.o.

RT-PCR confirmed RSV Events Product-Limit Survival Estimate

Log-Rank test of equality over strata; p=0.039

Proportion of Group With No Symptomatic RSV Infection

<table>
<thead>
<tr>
<th>Time to RSV Onset (days)</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>First case:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 31, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last case:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 26, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.9% of placebo with symptomatic RSV infections

<table>
<thead>
<tr>
<th>Number of Symptoms and Signs Reported*</th>
<th>Vaccine Efficacy</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any acute respiratory symptoms + RSV</td>
<td>41%</td>
<td>0.041</td>
</tr>
<tr>
<td>≥3 lower respiratory tract signs or symptoms + RSV</td>
<td>64%</td>
<td>0.047</td>
</tr>
<tr>
<td>≥least 4 lower respiratory tract signs or symptoms + RSV</td>
<td>75%</td>
<td>0.079</td>
</tr>
</tbody>
</table>
Ebola candidate – a construct displaying neutralizing protective epitopes defined by MAb binding
2014 ZEBOV/Makona GP – Candidate antigen probed with protective MAbs

![Image of virus with antibodies and epitopes](image.png)

<table>
<thead>
<tr>
<th>mAb</th>
<th>EBOV GP Epitope</th>
<th>SPR Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZ52</td>
<td>aa 42-43, 513, 550-553, 556</td>
<td>Conformational Neutralizing, Protective</td>
</tr>
<tr>
<td>13C6</td>
<td>aa 1-295</td>
<td>Conformational Neutralizing, Protective</td>
</tr>
<tr>
<td>6D8</td>
<td>aa 389-405 HNTPVYKLDISEATQVE</td>
<td>Linear Neutralizing, Protective</td>
</tr>
<tr>
<td>13F6</td>
<td>aa 401-417 ATQVEQHHRRTDNDSTA ATQVGQHHRRAADNDSTA(^1)</td>
<td>Linear Neutralizing</td>
</tr>
</tbody>
</table>

\(^1\)Two amino acid substitutions occurred in 2014 Guinea GP amino acids compared to 1976 Mayinga GP 401-417 epitope.
Sf9/baculovirus nanoparticle technology provides rapid response to an episodic “emerging” disease

<table>
<thead>
<tr>
<th>Key Activities</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication of Gire et al. in Science</td>
<td></td>
<td>9/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBOV GP gene plasmid construction</td>
<td>9/16</td>
<td>9/23</td>
<td>10/10</td>
<td></td>
</tr>
<tr>
<td>EBOV GP gene cloning to P1 virus</td>
<td>9/24</td>
<td>10/10</td>
<td>10/30</td>
<td></td>
</tr>
<tr>
<td>Production – master virus seed (MVS)</td>
<td></td>
<td>10/12</td>
<td>11/10</td>
<td></td>
</tr>
<tr>
<td>Production – drug substance, upstream</td>
<td>10/17</td>
<td>11/10</td>
<td>11/11</td>
<td></td>
</tr>
<tr>
<td>Production – drug substance, downstream</td>
<td></td>
<td></td>
<td>11/12</td>
<td>11/14</td>
</tr>
<tr>
<td>Production – drug product</td>
<td>9/16</td>
<td></td>
<td>11/4</td>
<td></td>
</tr>
<tr>
<td>Development – purification process</td>
<td></td>
<td></td>
<td>11/26</td>
<td></td>
</tr>
<tr>
<td>Development – EBOV GP ELISA</td>
<td>10/21</td>
<td></td>
<td></td>
<td>11/26</td>
</tr>
<tr>
<td>QC – MVS release testing</td>
<td></td>
<td>10/31</td>
<td>12/2</td>
<td></td>
</tr>
<tr>
<td>QC – drug substance release testing</td>
<td>11/11</td>
<td>12/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC – drug product release testing</td>
<td>11/14</td>
<td>12/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA – batch and QC record review</td>
<td>10/31</td>
<td>12/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA – GMP batch release</td>
<td></td>
<td></td>
<td></td>
<td>12/19</td>
</tr>
</tbody>
</table>

Primary Critical Path Secondary Critical Path
Human Antibody Responses to ZEBOV GP Nanoparticle Vaccine

- **Placebo doses, no MXM**
- **1 dose w/ MXM**
- **2 dose w/ MXM**
- **2 doses w/ MXM**
- **6.5 µg, 2 doses w/ MXM**

Whole Virus ELISA
Mayinga nab titer
ZEBOV PsVNA80

Pooled Survival Data 3 EBOV Challenge Studies in Cynomolgus Macaques

- **Vaccine**
- **Placebo**

- **Non-EBOV death**

- **Median for protected macaques**

- 6.5 to 50µg of GP +/- Matrix-M adjuvant
- One or two doses (21 day interval)
- Day 35 antibody titers

- 5µg EBOV GP + 50µg Matrix-M adjuvant on days 0 and 21 or 42
- Challenge 3-6 weeks post dose 2 with 100 pfu EBOV Kikwit
Influenza
Why not influenza; the ultimate re-emerging virus?

• Seasonal influenza vaccine formulations change on a yearly basis in search of the best match with predicted circulating strains.

• This is not a sure process; vaccine effectiveness may be compromised by:
 • Unanticipated antigenic drift in the selected viruses; e.g, A(H3N2) in recent seasons,
 • Sequence changes in hemagglutinin genes induced by egg adaptation during manufacture,
 • Co-circulation of two antigenically distinct B virus lineages in variable proportions,
 • Waning of immunity late in the season.

• Influenza HA, the prime protective antigen, is known to contain broadly neutralizing epitopes, but these don’t dominate the immune response.

• Can nanoparticle HA-based influenza vaccines (+/- Matrix-M adjuvant) provide broadly neutralizing antibodies (or other key responses)?
Broadly neutralizing monoclonal antibodies generated with nanoparticle influenza HA

- Pathway mirrors the approach to RSV vaccine
- Serial immunization of mice with several different strains of influenza and Matrix-M adjuvant, screen for broadly neutralizing monoclonal antibodies (bnMAbs)
- Clone and produce bnMAbs for Group 1, 2 and B strains (including Victoria and Yamagata lineages)
- Measure neutralization and calculate potency of bnMAb
- Screen candidate vaccine antigens for binding of bnMAb to the nanoparticles
- Immunize animals, with and without Matrix-M adjuvant; look for functional immunity and protection
- Evaluate induction of antibodies that bind to the same site(s) as bnMAb(s) via a competition assay
Broad A(H3N2) neutralizing activity from nanoparticle-induced MAbs

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7%</td>
<td>20%</td>
<td>0%</td>
<td>86%</td>
<td>93%</td>
<td>85%</td>
<td>94%</td>
<td>91%</td>
<td>93%</td>
<td>95%</td>
<td>91%</td>
<td>76%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>18</td>
<td>12%</td>
<td>26%</td>
<td>0%</td>
<td>38%</td>
<td>47%</td>
<td>17%</td>
<td>76%</td>
<td>56%</td>
<td>71%</td>
<td>50%</td>
<td>53%</td>
<td>35%</td>
<td>-</td>
<td>IgG1</td>
</tr>
<tr>
<td>29</td>
<td>13%</td>
<td>31%</td>
<td>1%</td>
<td>38%</td>
<td>88%</td>
<td>94%</td>
<td>94%</td>
<td>93%</td>
<td>94%</td>
<td>95%</td>
<td>93%</td>
<td>80%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>31</td>
<td>19%</td>
<td>52%</td>
<td>6%</td>
<td>65%</td>
<td>84%</td>
<td>70%</td>
<td>93%</td>
<td>86%</td>
<td>94%</td>
<td>92%</td>
<td>87%</td>
<td>76%</td>
<td>-</td>
<td>IgG1/IgG2a</td>
</tr>
<tr>
<td>36</td>
<td>42%</td>
<td>54%</td>
<td>22%</td>
<td>56%</td>
<td>75%</td>
<td>40%</td>
<td>94%</td>
<td>92%</td>
<td>94%</td>
<td>94%</td>
<td>93%</td>
<td>78%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>47</td>
<td>49%</td>
<td>63%</td>
<td>38%</td>
<td>91%</td>
<td>93%</td>
<td>93%</td>
<td>91%</td>
<td>92%</td>
<td>93%</td>
<td>95%</td>
<td>93%</td>
<td>76%</td>
<td>+</td>
<td>IgG2a</td>
</tr>
<tr>
<td>81</td>
<td>16%</td>
<td>28%</td>
<td>5%</td>
<td>86%</td>
<td>92%</td>
<td>89%</td>
<td>94%</td>
<td>94%</td>
<td>93%</td>
<td>96%</td>
<td>92%</td>
<td>75%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>82</td>
<td>17%</td>
<td>34%</td>
<td>0%</td>
<td>38%</td>
<td>40%</td>
<td>25%</td>
<td>75%</td>
<td>56%</td>
<td>67%</td>
<td>41%</td>
<td>54%</td>
<td>36%</td>
<td>-</td>
<td>IgG1</td>
</tr>
<tr>
<td>91</td>
<td>7%</td>
<td>6%</td>
<td>0%</td>
<td>25%</td>
<td>83%</td>
<td>96%</td>
<td>95%</td>
<td>93%</td>
<td>95%</td>
<td>94%</td>
<td>93%</td>
<td>85%</td>
<td>+</td>
<td>IgG1</td>
</tr>
</tbody>
</table>
bnMAbs recognize nanoparticle HA antigens and neutralize virus at very low concentration

A/Brisbane/10/07 HA A/Switz/9715293/13 HA

A2.91.3

K\textsubscript{D} = 9.8 nM

A2.36.1

K\textsubscript{D} = 3.8 nM

K\textsubscript{D} = 1.9 nM

K\textsubscript{D} = 2.8 nM

\begin{table}
\centering
\begin{tabular}{|c|cc|}
\hline
\textbf{Virus} & \textbf{A2.91.3} & \textbf{A2.36.1} \\
\hline
A/HK/4801/14 & 3.1 & 21.8 \\
A/S.Aust/55/14 & 2.1 & 14.8 \\
A/Switz/9715293/13 & 7.1 & 13.3 \\
A/Tx/50/12 & 14.1 & 2.2 \\
A/Vic/36/11 & 0.5 & 4.5 \\
A/Perth/09 & 1.8 & 2.9 \\
A/Brisbane/10/07 & 6.3 & 430 \\
\hline
\end{tabular}
\end{table}
Broad A(H1N1) neutralizing activity from bnMAbs

A/H1N1 Microneutralization (100 TCID₅₀)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46%</td>
<td>22%</td>
<td>47%</td>
<td>33%</td>
<td>30%</td>
<td>45%</td>
<td>56%</td>
<td>57%</td>
<td>-</td>
<td>IgG1/IgM</td>
</tr>
<tr>
<td>6</td>
<td>38%</td>
<td>19%</td>
<td>43%</td>
<td>41%</td>
<td>45%</td>
<td>40%</td>
<td>42%</td>
<td>63%</td>
<td>-</td>
<td>IgG1</td>
</tr>
<tr>
<td>16</td>
<td>68%</td>
<td>23%</td>
<td>52%</td>
<td>31%</td>
<td>30%</td>
<td>35%</td>
<td>36%</td>
<td>96%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>19</td>
<td>51%</td>
<td>29%</td>
<td>49%</td>
<td>39%</td>
<td>49%</td>
<td>29%</td>
<td>52%</td>
<td>68%</td>
<td>-</td>
<td>IgG1</td>
</tr>
<tr>
<td>27</td>
<td>55%</td>
<td>18%</td>
<td>57%</td>
<td>38%</td>
<td>44%</td>
<td>36%</td>
<td>47%</td>
<td>96%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>28</td>
<td>65%</td>
<td>29%</td>
<td>50%</td>
<td>59%</td>
<td>52%</td>
<td>44%</td>
<td>55%</td>
<td>71%</td>
<td>+</td>
<td>IgG1/IgM</td>
</tr>
<tr>
<td>29</td>
<td>61%</td>
<td>38%</td>
<td>57%</td>
<td>47%</td>
<td>59%</td>
<td>37%</td>
<td>54%</td>
<td>69%</td>
<td>-</td>
<td>IgG1</td>
</tr>
<tr>
<td>41</td>
<td>65%</td>
<td>40%</td>
<td>54%</td>
<td>47%</td>
<td>57%</td>
<td>42%</td>
<td>63%</td>
<td>79%</td>
<td>+</td>
<td>IgG1</td>
</tr>
<tr>
<td>49</td>
<td>14%</td>
<td>12%</td>
<td>29%</td>
<td>38%</td>
<td>38%</td>
<td>20%</td>
<td>27%</td>
<td>93%</td>
<td>+</td>
<td>IgG1</td>
</tr>
</tbody>
</table>
A(H1N1) neutralization and HAI by selected neutralizing bnMAbs demonstrates high avidity binding.
Nanoparticle vaccine with Matrix-M adjuvant provides enhanced neutralization and antibodies to conserved neutralizing epitopes.

Ferret Immunogenicity of A/California/07/09 Nanoparticles

<table>
<thead>
<tr>
<th></th>
<th>A/Cal/07/09 HAI</th>
<th>mAb A1.27.1 IC50</th>
<th>A/Cal/07/09 MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Cal NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Cal NP + MXM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Cal NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Cal NP + MXM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GMT (95% CI)
Superior clearance of A/California/07/09 challenge by ferrets immunized with vaccine and Matrix-M adjuvant
High-avidity, cross-lineage influenza B virus neutralization by nanoparticle-induced bnM Ab
Combination respiratory vaccine: Influenza+ RSV

• Single Vaccine to cover two key respiratory pathogens commonly responsible for lower respiratory tract disease

• Co-formulate nanoparticle Influenza and RSV vaccines

• Induce broadly neutralizing influenza antibodies, to address:
 • Unanticipated antigenic drift in the selected viruses, e.g. A(H3N2) in recent seasons
 • Sequence changes in hemagglutinin genes induced by egg adaptation
 • Potential for improved efficacy

• Build on the RSV efficacy data

• Explore leveraging of Matrix-M adjuvant:
 • Enhance both the magnitude and affinity of antibodies
 • Enhance the induction of broadly neutralizing antibodies
 • Dose spare
Co-formulation of RSV and influenza nanoparticles

Balb/C mice

- 1.5µg RSV-F +/- 1.5µg HA per strain +/- 5µg MXM, 0 and 21 days

Influenza HAI and RSV Antibody Responses to a Combination Respiratory Vaccine

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>bnMAb</th>
<th>IT<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV F</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Quad NP</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>Combo</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>RSV F + Matrix-M</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Quad NP + Matrix-M</td>
<td>74.5</td>
<td></td>
</tr>
<tr>
<td>Combo + Matrix-M</td>
<td>34.6</td>
<td></td>
</tr>
</tbody>
</table>

* H3 bnMAb
Nanoparticle vaccines and Matrix-M adjuvant

- Nimble manufacturing platform
- Can generate fully glycosylated and properly-folded membrane glycoproteins
- Antigens display neutralizing epitopes that are cryptic in natural infection
 - Demonstrated efficacy against RSV illness in older adults
 - Demonstrated ZEBOV neutralizing responses in human and protection in NHPs
 - Murine and ferret neutralizing responses to influenza HA, and induction of antibodies to broadly neutralizing epitopes, which may translate into improved protection across strains
- Matrix-M adjuvant provides:
 - Dose-sparing
 - Enhanced neutralizing antibody responses
 - Enhanced CD4+ and CD8+ T cell responses

Next steps in 2016-17

- RSV F nanoparticle vaccine is in Phase 3 efficacy trials:
 - Infant protection via maternal immunization
 - Older adults ≥ 60 years
- Influenza nanoparticle vaccine / respiratory combination vaccine:
 - Optimizing process for GMP manufacture
 - Targeting Q1 2017 Phase 1 clinical trial to assess:
 - Induction of broadly neutralizing HA antibodies in heavily primed humans
 - Optimal formulation for immunogenicity of all components in a multivalent influenza vaccine with RSV F
 - Contribution of, and optimal dose for, Matrix-M adjuvant.
- Other projects:
 - MERS
 - Antigen validated by high neutralizing titers in animal sera
 - Targeting vaccine Phase 1 in 2017
 - Zika – pre-clinical

Influenza project acknowledgement:
This project has been funded in part by the Office of the Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority, Department of Health and Human Services under Novavax’ contract with HHS-BARDA (HHSO100201100012C).