Novavax Ebola/Makona Glycoprotein (GP) Nanoparticle Vaccine Candidate Update: NHP and Clinical Data

July 21, 2015
Safe Harbor Statement

Statements herein relating to future financial or business performance, conditions or strategies and other financial and business matters, including expectations regarding clinical development, product sales, operating expenses, and anticipated milestones are forward-looking statements within the meaning of the Private Securities Litigation Reform Act. Novavax cautions that these forward-looking statements are subject to numerous assumptions, risks and uncertainties, which change over time. Such factors that may cause actual results to differ materially from the results discussed in the forward-looking statements or historical experience include risks relating to the early stage of Novavax's product candidates under development; current results may not be predictive of future pandemic results, results of our seasonal influenza vaccine or any other vaccine that we may develop; further testing is required before regulatory approval can be applied for and the FDA may not approve a vaccine even if further trial results are similar to those disclosed previously by the company; uncertainties relating to clinical trials, including possible delays in initiating or completing the trials and safety and efficacy results; dependence on the efforts of third parties; competition for clinical resources and patient enrollment from drug candidates in development by other companies with greater resources and visibility; and risks that we may lack the financial resources and access to capital to fund our operations including further clinical trials. Further information on the factors and risks that could affect Novavax’s business, financial conditions and results of operations, is contained in Novavax’s filings with the U.S. Securities and Exchange Commission, which are available at http://www.sec.gov. These forward-looking statements speak only as of the date of this presentation, and Novavax assumes no duty to update forward-looking statements.
Novavax Ebola GP Nanoparticle Vaccine

• Ebola Zaire Makona GP Nanoparticle Vaccine
 ▪ Recombinant, full length EBOV/Makona GP trimers
 ▪ 30 – 40 nm spherical nanoparticles

• Matrix-M™ adjuvant
 ▪ Nano-particulate saponin-based adjuvant
 o Promising stability in long-term pre-formulation with ZEBOV GP
 ▪ EBOV-H-101 represents 8th clinical trial using Matrix-M
 ▪ Most recently with flu H7N9-well tolerated, dose sparing, robust HAI
 o Adjuvant-induced cross-protection in avian influenza
 ▪ Toxicology study completed prior to study initiation
 o Transient injection site, draining lymph node inflammatory response
 o No distant tissue findings
Novavax EBOV-H-101 Protocol

- Randomized, placebo-controlled, dose-escalating design with safety monitoring committee oversight

- **Primary Objectives:**
 - To accumulate a safety profile based on 7-day solicited reactogenicity, 84-day all AE profile, 1-year MAE and SAE profile, selected clinical labs
 - To demonstrate Matrix-M adjuvant effect on anti-GP IgG responses
 - To select the lowest antigen dose yielding a anti-EBOV GP IgG response not < the maximum feasible unadjuvanted dose

- **Secondary Objectives:**
 - To describe serum immune responses in terms of antibody titers competitive with known-neutralizing EBOV GP mab (13C6)
 - To describe antibody response kinetics in response to 1 and 2-dose regimens through one year
 - To compare Novavax anti-GP IgG with ELISA and neutralizing antibody responses from an external lab (University of Marburg)
Novavax EBOV-H-101

Study Design

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Day 0 Vaccination</th>
<th>Day 21 Vaccination</th>
<th>Subjects per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EBOV GP Antigen Dose</td>
<td>Matrix-M™ Adjuvant Dose</td>
<td>EBOV GP Antigen Dose</td>
</tr>
<tr>
<td>A</td>
<td>6.5µg</td>
<td>--</td>
<td>6.5µg</td>
</tr>
<tr>
<td>B</td>
<td>6.5µg</td>
<td>50µg</td>
<td>6.5µg</td>
</tr>
<tr>
<td>C</td>
<td>6.5µg</td>
<td>50µg</td>
<td>0µg (Placebo)</td>
</tr>
<tr>
<td>D</td>
<td>13µg</td>
<td>--</td>
<td>13µg</td>
</tr>
<tr>
<td>E</td>
<td>13µg</td>
<td>50µg</td>
<td>13µg</td>
</tr>
<tr>
<td>F</td>
<td>13µg</td>
<td>50µg</td>
<td>0µg (Placebo)</td>
</tr>
<tr>
<td>G</td>
<td>25µg</td>
<td>--</td>
<td>25µg</td>
</tr>
<tr>
<td>H</td>
<td>25µg</td>
<td>50µg</td>
<td>25µg</td>
</tr>
<tr>
<td>J</td>
<td>25µg</td>
<td>50µg</td>
<td>0µg (Placebo)</td>
</tr>
<tr>
<td>K</td>
<td>50µg</td>
<td>--</td>
<td>50µg</td>
</tr>
<tr>
<td>L</td>
<td>50µg</td>
<td>50µg</td>
<td>50µg</td>
</tr>
<tr>
<td>M</td>
<td>50µg</td>
<td>50µg</td>
<td>0µg (Placebo)</td>
</tr>
<tr>
<td>N</td>
<td>0µg (Placebo)</td>
<td>--</td>
<td>0µg (Placebo)</td>
</tr>
</tbody>
</table>

Total Subjects per Stage: 40, 75, 115

Total Subjects: 230
Novavax EBOV-H-101 Status

• Clinical trial material for phase I released Dec 2014
• 230 healthy young adults 18 to < 50 y.o., male and non-pregnant female; recruited in Australia.
• First subject dosed 10 Feb 2015
 ▪ No stopping rules triggered during dose escalation
• Last subject received second dose April 2015
• Current data span days 0 – 35
 ▪ Safety – all subjects
 ▪ Novavax Makona GP ELISA – all per-protocol subjects
 ▪ Inactivated Makona whole-virus capture ELISA provided by Dr. V. Krähling, Univ. Marburg. 100-subject randomly selected panel at day 35 spanning placebo and 10 of 12 active groups
• Pending, ~ 24 July, neutralization data on same 100 serum panel from University of Marburg (Dr. Becker).
Novavax ZEBOV Makona IgG ELISA
Preliminary Results

Novavax Makona GP ELISA

- 2-dose adjuvanted regimens
- 1-dose adjuvanted regimens
- Unadjuvanted regimens

SAB TC bovine hyperimmune serum std. set to 1,000 EU
Whole Virus ELISA Results

Day 35 Makona Whole Virus ELISA Titers
Dr. V. Krähling, Phillips Univ. Marburg

2-dose adjuvanted regimens
Novavax EBOV-H-101 Safety to Date

• Dose escalation completed without triggering stopping rules
• No attrition due to AE
• Local injection site pain
 ▪ 8.3% of placebo recipients
 ▪ 21.6% of unadjuvanted vaccine recipients
 ▪ 60.0% of 1-dose adjuvanted vaccine recipients and 91.6% of 2-dose adjuvanted vaccine recipients
 ▪ Predominantly mild
 ▪ Transient
• Fever in 1 placebo recipient (2.1%), no 1-dose adjuvanted vaccine recipients and 3 in 2-dose adjuvanted vaccine recipients (5.0%)
 ▪ None >38.9°C
• Mild to moderate headache, myalgia, arthralgia and fatigue
• One SAE – active vaccinee with trauma secondary to auto accident
• Rates of severe; severe and related unsolicited AEs closely similar in active and placebo subjects
Preclinical NHP *Cynomolgus macaque* Challenge Summary

1. Texas Biomedical NOV2014-001- Complete
 - 5µg EBOV GP + Matrix
 - Immunization Day 0 and 21 (n=3)
 - 100% survival, challenged with 100 pfu wt ZEBOV Kikwit

2. OBRA/DMID/NIAID Stage one C25 - Complete
 - 5µg EBOV GP + Matrix
 - Immunization Day 0 and 42 (n=2) or Day 21 and 42 (n=2)
 - 100% survival, challenged with 100 pfu wt ZEBOV Kikwit

3. OBRA/DMID/NIAID Stage two C29 - Challenge result pending
 - 5µg or 1µg EBOV GP + Matrix (n=8)
 - 5µg EBOV GP + 5µg SUDV GP + Matrix (n=2)
 - Immunization Day 7 and 28
 - Challenged with 100 pfu wt virus ZEBOV Kikwit, 14 July 2015
Baboon Modeled Anti-EBOV GP IgG Response

Anti-EBOV/Makona GP IgG ELISA - EC$_{50}$

- 5 µg EBOV GP + Matrix
- 60 µg EBOV GP + Matrix
- 60 µg EBOV GP + AlPO$_4$
- 60 µg EBOV GP

- Adjuvant effect
- Dose sparing
- Durability
- 13C6-like antibodies

Welliver et al, Univ. of Oklahoma
Summary

• Full-length Recombinant Makona GP with Matrix-M adjuvant
• 100% protection against mortality in 2 NHP challenges to date, third in progress to identify failing dose
• Sustained IgG anti-GP responses in baboons
• Phase 1 data to date:
 ▪ Adjuvant increases local and systemic reactogenicity, but symptoms are predominantly mild-moderate and transient
 ▪ Approx. 3% vaccine-attributable incidence of mild-to-moderate fever in 2-dose adjuvanted vaccine groups
 ▪ Approximately 10-fold antigen dose-sparing with Matrix-M (6.5 vs 50µg)
 ▪ Two-dose adjuvanted regimens strongly immunogenic
 ▪ Similar findings with Univ. Marburg Whole Virus ELISA
 ▪ One-dose regimens readily detected, lower compared to two-dose
 ▪ Neutralization data pending
• Further development of this vaccine is warranted