Immunization of Pregnant Baboons with RSV F Nanoparticle Vaccine Protects Infant Baboons Challenged with Respiratory Syncytial Virus In a Comparable Manner to Palivizumab Prophylaxis

R. Welliver¹ Sr, J. Papin, R. Wolf¹, V. Ivanov¹, S. Moore¹, R. Raghunadan², H. Lu², D. Flyer², G. Smith², G. Glenn²

¹University of Oklahoma Health Sciences, Oklahoma City, OK ²Novavax Inc., Gaithersburg, MD

DISCLOSURE: Studies funded by Novavax, Inc. No other conflicts of interest to disclose

Respiratory Syncytial Virus (RSV)

- Most frequent cause of infant hospitalization in the US, and causes 200,000 deaths worldwide annually^{1,2}
- Severe disease in infancy often leads to recurrent wheezing³
- No licensed vaccine or effective antiviral
- Highest rates of hospitalization and severe disease occur < 90 days of age⁴
- Monoclonal antibodies to F protein (palivizumab, motavizumab) reduce hospitalization rates and sequelae in randomized clinical trials⁵
- Palivizumab is expensive, recommended for high-risk infants only

- 1. Nair, et al. Lancet 2010, 375:1545
- 2. MMWR, 2013, 263:141
- 3. Escobar et al. BMC Pediatrics 2013, 13:97;
- 4. CDC: National Hospital Discharge Survey 2005-2009
- 5. Yoshihara, Pediatrics 2013; Blanken, NEJM 2013

Novavax Recombinant F Protein Nanoparticle Vaccine

- RSV F vaccine is composed of recombinant, near-full-length fusion (F) glycoprotein homotrimers
- Purified homotrimers spontaneously assemble into protein micelles of RSV
 F, may engage TLRs and with potential to drive B-cell antibody affinity
 maturation

Infant Baboon Model of RSV Infection: Rationale

- Infant (28 day) baboons develop tachypnea and labored breathing following RSV challenge, like humans but unlike other NHP models
- Infant baboons develop bronchiolar obstruction with exfoliated epithelial and inflammatory cells, like humans, unlike rodent models

Hypothesis: Maternal Vaccination May Protect Infants Against RSV Challenge in a Manner Similar to Palivizumab

Palivizumab Passive Transfer Protocol

Protocol

End Point Assays

Study Day -1 (infant age 27 days)

IM 15mg/Kg Palivizumab or placebo

Day 0

Infant sedated

Blood, BAL collection, clinical measures 2X10⁸ pfu RSV A2 challenge IT

Day 5

Infant sedated

Blood, BAL collection, clinical measures

Day 7

Infant sedated

Blood, BAL collection, clinical measures

Day 10

Infant sedated

Blood, BAL collection, clinical measures

Blinded Observations

Respiratory rate (sedated and awake) BAL Total Leukocyte count, viral load Histopathology

Serology on serum and BAL fluid

- 1. Palivizumab competition ELISA (PCA)
- 2. Micro neutralization (MN)
- 3. Anti-F IgG ELISA

Challenge of infants done in pairs (1 palivizumab and 1 placebo), n=4 per group

Maternal Immunization-Infant Challenge Protocol

Protocol

Mother immunized 3rd trimester: 60µg RSV F adsorbed to AlPO₄ x 3 at 4 week intervals

Day 0 (infant age 28 days)

Infant sedated Blood, BAL collection, clinical, PFT 2X10⁸ pfu RSV A2 challenge

Day 5

Infant sedated
Blood, BAL collection, clinical, PFT

Day 7

Infant sedated Blood, BAL collection, clinical, PFT

Day 10

Infant sedated Blood, BAL collection, clinical, PFT **End Point Assays**

Blinded Observations

Respiratory rate
BAL Total Leukocyte count, viral load
WOB, PEFR
Histopathology

Serology on serum and BAL:

- 1. Palivizumab competition (PCA)
- 2. Micro neutralization (MN)
- 3. Anti-F IgG ELISA

Challenge of infants done in pairs (1 maternal vaccination and 1 unvaccinated), n=5 per group

Antibody Titers Present in Infants at Time of RSV Challenge

Palivizumab given Challenge Day -1 Infant titers measured Day 0 Maternal and Infant titers measured on Challenge Day 0 and 26 respectively

PCA: Palivizumab competing antibodies, PCA reported as EU (2X= µg/ml) MN: Micro neutralization

RSV titers in infants of vaccinated mothers are similar to palivizumab titers

Palivizumab and Maternal Immunization Prevent Tachypnea in Infant Baboons Challenged with RSV

Fold Rise in Respiratory Rate Above Baseline

Palivizumab study

Maternal immunization study

P- values were calculated using t-test from Anova. Error bars represent standard errors of the mean (SEM)

Effect of Palivizumab and Maternal Vaccination on Viral Recovery and Total Leukocyte cells in BAL Fluid In Infants

Lung Viral Load Day 5

BAL Total Leukocyte Day 5

P values were calculated using a Student's t Test

Pulmonary Function Tests in Infants of Vaccinated Mothers and Untreated Controls

Work of Breathing Day 5

Work of breathing reduced in protected infants

Peak expiratory flow rate greater in protected infants

Conclusions: Non-Human Primate Safety and Efficacy Study

- Maternal immunization provided infant baboons with antibody titers similar to those following palivizumab administration.
- Maternal immunization was associated with reduced tachypnea and dyspnea in infants following RSV challenge; this reduction was similar in degree to that produced by palivizumab prophylaxis.
- Maternal immunization provided positive changes in viral replication, BAL leukocyte response, work of breathing and PEFR
- Effects of maternal immunization were similar to those following palivizumab administration
- Maternal immunization with RSV F may be a reasonable strategy to prevent severe RSV illness in normal human newborns